A 2.4-GHz 0.18- m CMOS Self-Biased Cascode Power Amplifier
نویسندگان
چکیده
A two-stage self-biased cascode power amplifier in 0.18m CMOS process for Class-1 Bluetooth application is presented. The power amplifier provides 23-dBm output power with a power-added efficiency (PAE) of 42% at 2.4 GHz. It has a small signal gain of 38 dB and a large signal gain of 31 dB at saturation. This is the highest gain reported for a two-stage design in CMOS at the 0.8–2.4-GHz frequency range. A novel self-biasing and bootstrapping technique is presented that relaxes the restriction due to hot carrier degradation in power amplifiers and alleviates the need to use thick-oxide transistors that have poor RF performance compared with the standard transistors available in the same process. The power amplifier shows no performance degradation after ten days of continuous operation under maximum output power at 2.4-V supply. It is demonstrated that a sliding bias technique can be used to both significantly improve the PAE at mid-power range and linearize the power amplifier. By using the sliding bias technique, the PAE at 16 dBm is increased from 6% to 19%, and the gain variation over the entire power range is reduced from 7 to 0.6 dB.
منابع مشابه
2.4 GHz CMOS Power Amplifier with Mode-Locking Structure to Enhance Gain
We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm...
متن کاملAnalysis and Design of High Gain, and Low Power CMOS Distributed Amplifier Utilizing a Novel Gain-cell Based on Combining Inductively Peaking and Regulated Cascode Concepts
In this study an ultra-broad band, low-power, and high-gain CMOS Distributed Amplifier (CMOS-DA) utilizing a new gain-cell based on the inductively peaking cascaded structure is presented. It is created bycascading of inductively coupled common-source (CS) stage and Regulated Cascode Configuration (RGC).The proposed three-stage DA is simulated in 0.13 μm CMOS process. It achieves flat and high ...
متن کاملA 2.45 GHz 30dBm differential 0.18 μm CMOS class-E power amplifier with 42% PAE
This paper presents a 30dBm (1W) class-E power amplifier projected in a standard 0.18-μm CMOS technology. The power amplifier (PA) consists in two differentials stages. The main stage employs a cascode class-E RF power amplifier with a self-biasing circuit. The driver stage uses the technique of Injection-Locking to substantially reduce the input power signal, maintaining a high gain. At 2.45 G...
متن کاملA CMOS Class-E Cascode Power Amplifier for GSM Application
The design of A 2.4-GHz CMOS Class E cascode power amplifier (PA) for GSM applications in TSMC 0.18-μm CMOS technology present in this paper. Proposed Class E cascode PA topology is a single-stage topology in order to minimize the device stress problem. A parallel capacitor is connected across the transistors for efficiency enrichment also for dominating the effect of parasitic capacitances at ...
متن کاملA High-gain Cmos Lna for 2.4/5.2-ghz Wlan Applications
This paper describes a high-gain CMOS low-noise amplifier (LNA) for 2.4/5.2-GHz WLAN applications. The cascode LNA uses an inductor at the common-gate transistor to increase its transconductance equivalently, and therefore it enhances the gain effectively with no additional power consumption. The LNA is matched concurrently at the two frequency bands, and the input/output matching networks are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001